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Abstract

Botnets currently use domain-generation algorithms to produce fast-flux domains that enable them to evade detection. Accurately
categorizing these botnet domains is crucial to develop cybersecurity solutions against botnet threats. However, existing methods,
requiring labeled data, are ineffective against new botnets. To address this issue, we propose Domain2Vec, a metric learning-based
approach that can explore new botnets. Domain2Vec integrates a framework of metric learning, which uses individual domains from
known botnets for categorization of unknown botnet domains. The training involves an attention-based encoder, and it includes a
constraint to ensure that samples with the same labels are closer in the embedding space. The categorization uses the encoder to project
domain names into appropriate representations (numerical vectors), even for domains from new botnets. Finally, Domain2Vec uses
numerical vectors to explore botnets. Experiments showed that Domain2Vec performs well on domain retrieval and clustering tasks
without labeled data, outperforming the state of the art by 13% and 100%, respectively. Real-world tests demonstrate that Domain2Vec
can effectively identify unreported malicious domains and monitor botnet activities.

1. INTRODUCTION
Botnets, complex networks of compromised devices orchestrated
by cybercriminals [1, 2], have emerged as a significant cybersecu-
rity threat in modern times. These networks serve as platforms
for various malicious activities, including malware injection [3, 4],
spam distribution [5], distributed denial of service attacks [6], and
phishing [7]. In 2021, the impact of botnet activities was stark,
with over 1.6 million computing devices compromised, leading
to considerable financial losses amounting to billions of dollars
globally [8]. The broad scope and severity of these attacks under-
score the ongoing challenge in countering botnets—a challenge
that persists despite advances in cybersecurity technologies.

Extensive research has been devoted to behavioral detection of
botnets, i.e. identifying benign or malicious domain names [9, 10].
Yet, the binary classification of domain names is insufficient
to cope with botnet threats fully. This is because modern bot-
nets commonly leverage the domain fluxing technique to escape
network monitoring and avoid Internet takedown [2, 11]. With
domain fluxing, the bots (clients) injected with malware codes can
generate a large number of domain names, i.e. fast-flux domains.
Those botnet domains serve as the potential rendezvous stubs for
the command-and-control (C&C) connections between the bots
(clients) and the botmaster (server). Domain fluxing is very cost-
effective to botmasters because it merely requires a few botnet
domains registered where the bots can receive the instructions
and fulfill the attacks. In this case, rough behavioral detection on
real-world networks, where the domains are divided into benign
and malicious classes, cannot relieve the botnet threats thor-
oughly because a few fugitives of fast-flux domains could still
maintain the C&C channels for attacks.

Given the escalating complexity and prevalence of botnet
threats, traditional approaches that merely identify and filter

all malicious botnet domains are proving to be inadequate.
Consequently, researchers and cybersecurity vendors are now
shifting their focus toward the rapid categorization of botnet
domains to facilitate the issuance of timely security alerts
within actual network environments [12, 13]. This strategic shift
is crucial as it enables network asset owners to proactively
prepare for impending botnet attacks by deploying targeted
security patches and configuring robust firewalls customized
to the specific threat [14]. More importantly, the meticulous, fine-
grained categorization of botnet domains into specific categories
aligned with their botnet types allows for more accurate tracking
and effective mitigation of these threats [15]. This approach not
only enhances the effectiveness of the security measures but
also optimizes the allocation of defensive resources. By precisely
identifying the nature and origin of the threat, this method fosters
a more strategic and informed response, thereby significantly
reducing the potential damage these botnets [9, 16] can cause.

In botnet domain categorization, several research efforts have
been made to broaden our insights of domain fluxing mecha-
nisms in botnets. A common solution framework is to collect the
botnet domains from reverse engineering or bot-infected hosts
as train sets, and exploit the supervised classifiers, e.g. CNN [17],
RNN [18], and LSTM [19], for divisions of botnet domains. In addi-
tion, some feature-based methods [9, 20] for behavioral detection
can be extended for the multi-classification of botnets. To perform
well, the above methods require labeled training data covering at
least partial domains created by the botnets. In other words, they
are less effective if a botnet domain family is never seen before
and no labeled data are available [21]. This requirement greatly
limits the generality of these methods since botnet threats grow
along with the arms race between cybercriminals and defenders,
making the complete collection of malicious fast-flux domains
impossible.
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Figure 1. The illustration of weaknesses in existing methods and an ideal model for a solution; in the ideal model, the prior knowledge is utilized, and
new botnet domains can be embedded into a proper representation to achieve an appropriate categorization, i.e. classes A and B, while the existing
unsupervised method without the prior knowledge would perform weakly, i.e. classes C and D.

To address the challenges associated with effectively categoriz-
ing botnet domains, a straightforward approach involves utilizing
unsupervised learning. An innovative method in this domain
is the Helix model [22], which employs a spatio-temporal deep
neural network autoencoder (An autoencoder is a type of neural
network designed to learn efficient representations of data. Its
function is to compress input data into a more compact encoding.)
to transform domain names into numerical vectors. These vectors
are subsequently clustered using algorithms such as KMeans to
identify distinct groups of botnet domains. However, the efficacy
of these unsupervised approaches often falls short, particularly
when dealing with the complex nature of fast-flux botnet
domains. As detailed in Section 5, these domains exhibit highly
irregular behaviors and are distributed across botnets in a manner
that makes traditional clustering challenging [23]. Without the
integration of prior knowledge or advanced feature engineering,
embedding these domains into a coherent feature space that
accurately reflects their underlying associations proves difficult.
This challenge is visually illustrated in the bottom right of Fig. 1,
highlighting the involved complexities. Consequently, achieving
a fine-grained categorization of such diversified botnet domains
without labeled data remains a substantial challenge and an
ongoing area of research within real-world network security
contexts.

Our motivation to develop a novel botnet domain catego-
rization method originates from the limitations of existing
approaches, which primarily rely on labeled data. To address
this issue, we introduce Domain2Vec, a metric learning-based
model designed to generalize effectively across both known and
previously unseen botnet domains by embedding them into vector
representations. Metric learning refers to a category of machine
learning algorithms designed to derive an optimal distance
metric from provided data. This method not only capitalizes on
the rich information available from labeled datasets but also

pioneers the identification of new, previously unrecognized botnet
families. Domain2Vec employs a feature extraction framework
(an encoder) that captures complex patterns in known botnet
domains to predict and categorize unknown malicious domains
effectively, as illustrated in Fig. 1. Our model utilizes a multi-
head attention-based encoder (A technique employed in deep
learning architectures, enabling the model to concurrently
attend to multiple aspects of the data during processing.),
detailed in Section 4.3, adept at identifying subtle character
patterns crucial for recognizing botnet domains. Furthermore, our
approach introduces a novel metric learning constraint, detailed
in Section 3.2, which enhances the model’s ability to generalize
across varied domain types. The refined encoder acts as a robust
feature extractor, transforming botnet domains into precise and
interpretable numerical vectors. These vectors are subsequently
employed in advanced classification, retrieval, and clustering
tasks, facilitating the effective categorization of emerging botnet
domains, thereby substantially broadening the scope and utility
of our method.

Contribution. Our contributions can be summarized as
follows:

• We propose a deep metric learning model to validly convert
the malicious botnet domains into representative vectors. To
the best of our knowledge, our model is the first to apply deep
metric learning to the fine-grained categorization of botnet
domains.

• Based on the model, we implement Domain2Vec which can
be used for botnet domain retrieval and clustering even
without corresponding labeled data. Experiments carried out
on benchmarks show that Domain2Vec not only outperforms
traditional supervised multi-classification tasks but also
achieves state-of-the-art performance on the categorization
of never-before-seen botnet domains.
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• Furthermore, real-world tests on DNS infrastructures
indicate that our approach can uncover never-before-seen
domains and track new botnets in the wild.

2. RELATED WORK
The research on botnet domain categorization roughly falls into
two broad categories: DNS traffic-based and bare domain-based
methods.

2.1. DNS traffic-based approach
In the DNS traffic-based methods, the domain’s metadata from
raw DNS traffic, a.k.a. side information, are captured for analysis
of botnet characteristics. Exposure [24], Winning with DNS Failures
[25], NetFlow [26], and Phoenix [11] are representative methods in
this category. Specifically, Exposure [24] is a malicious DNS traffic
monitoring system, which exploits the information from possibly
infected hosts for discovering domain names used in phishing,
malicious code, or botnets. Yadav and Reddy [25] focused on
both successful DNS queries and DNS failures (e.g. NXDomain)
and proposed a method called Winning with DNS Failures, which
analyzes the information regarding IPs and domain names to
discover a set of potential C&C server IP addresses. Grill et al. [26]
classify normal DNS traffic and botnet DNS queries using infor-
mation acquired by NetFlow, e.g. the IP addresses, time stamps,
port numbers, byte counters, and packet counters of DNS queries.
Similarly, Phoenix [11] filters out the benign domains based on the
linguistic features and statistical features of DNS traffic and then
clusters the domains and IPs as either botnet-related or benign.

In a nutshell, the above DNS traffic-based methods require
extensive tracking of DNS traffic, which may cause the serious
concern of privacy leakage [10] and expensive deployment costs.
For this reason, they are excluded from the baselines, and we
mainly focus on the other type of methods, i.e. bare domain-based
methods.

2.2. Bare domain-based approach
In this group of methods, the traffic-independent domain names,
a.k.a. bare domains, are utilized as inputs of the botnet domain
categorization. Those bare domain-based methods focus on learn-
ing the character-level features with either manual feature engi-
neering or deep neural networks. Then the problem of catego-
rizing botnet domains is solved with classification or clustering,
depending on whether or not labeled domain classes are available.

FANCI [9] and HAGDector [27] adopted a series of manually
selected lexical features and used supervised learning classifiers,
e.g. random forest (RF) and support vector machine (SVM), to
classify benign and botnet domains. Since manually selecting
features is tedious, a series of deep learning-based methods were
proposed and achieved better accuracy and false positive rate
results in the classification and behavioral detection of bare
domains. Generally, those deep learning-based methods adopt
the convolutional neural network (CNN) [17], recurrent neural
network (RNN) [19], or a hybrid architecture [18, 28, 29] as the
backbone network in the model and can adjust the activation
function of the output layers according to the task types, e.g.
softmax for botnet domain classification and sigmoid for domain
behavioral detection. Nevertheless, the above methods fail to cope
with the categorization of new botnet domains without labeled
data. Recently, Helix [22] utilized an autoencoder architecture
for unsupervised clustering of botnet domains without requiring
labeled data. Its performance, however, is weak.

Table 1. Summary of related works on botnet domain
categorization; some traffic-based methods require the
captured DNS traffic and additional side information, which
being used as baselines might not be fair for character-level
(a.k.a. bare domain-based) methods, e.g. FANCI

Name � Detail Comments

Exposure x Raw DNS Queries Privacy leakage
Win Fail x IPs and NXDomains
NetFlow x NetFlow Records
Phoenix x Features on DNS traffic
Endgame � LSTM Classifier Lacking extensibility
Invincea � Parallel CNN Classifier
CMU � Bidirect LSTM Classifier
MIT � LSTM-CNN Classifier
NYU � Stacked CNN Classifier
FANCI � Manual Lexical Features Weak performance
HAGDector � Mixed Manual Lexical

Features
Helix � Unsupervised

Autoencoder
Ours - Metric Learning

Framework
Botnet domain
representation without
data annotation

�: As Baseline

In summary, existing methods are either fronted with privacy
leakage problems or perform weak in unsupervised conditions,
as listed in Table 1. Thus, there is an urgent demand and a
challenging research gap in categorizing botnet domains. This
work is dedicated to filling this gap.

3. PRELIMINARIES
To help better understand the paper, we first define the problem
to be solved. Then, we briefly introduce the metric learning theory
adopted in Domain2Vec. Finally, we describe the categories of
domain fluxing techniques and their characteristics.

3.1. Problem statement
The problem of categorizing new botnet domains could be
abstracted as a task of knowledge transfer, which assumes the
availability of two datasets: a labeled support dataset Dl and a
query dataset Du, containing the label (class) set of Cl and Cu,
respectively, with the setting of Cu ∩ Cl = ∅. Therefore, the goal is
to associate the domain data in Du with the class set Cu, leveraging
the knowledge from Dl, which is different from the existing tasks
of supervised classification [18, 19] and unsupervised clustering
[22]. Note that the class set Cu of the query set might not be known
in real-world scenarios, and we include it here to help understand
the problem formulation.

Difference from behavioral detection. Behavioral detection
[9, 10] aims to divide the bare domains or non-exist domains
(NXDomains) into benign domains and fast-flux (malicious) ones,
i.e. binary classification. As stated in Section 1, behavioral classi-
fication is not enough to deal with botnet threats.

3.2. Metric learning
For the knowledge transfer, Domain2Vec adopts a metric learning
framework rather than pure classifiers, where the outputs of our
models are not specific categories/classes but the representation
vectors of input data, which can be validly used for input of exist-
ing algorithms (e.g. RF and K-Means). In other words, we focus on
adjusting inter-class and intra-class distances of botnet domain
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Table 2. Categories of domain generating algorithms.

Pattern Example Comment

Arithmetic Botnet pushdo Combination of arithmetic
qiclafux.kz operations, e.g. multiply,

divide,
lebusobafwyo.kz and modulo. Unfixed length

and
xerrucehel.kz alphabets ∈ {0-9a-z}

Hash Botnet ud2 Hashing values on given
eb616ba683e7dd4bba24.
info

seeds, usually random
numbers

3122b1948d87ee39af71.
info

or timestamps. Fixed length

b5daea4485986519b4d4.
info

and alphabets ∈ {0-9a-f }

Wordlist Botnet suppobox Samples from a wordlist
rightneither.net (dictionary), e.g. {right,
christmasbotwright.ru nethier, christmas, bot,

wright}
Permutation Botnet banjori Permutation of given

andersensinaix.com sequences, i.e. common
xjsrrsensinaix.com suffix rsensinaix

embeddings to project the datasets into appropriate metric space
where the samples with the same label are smaller in distance
than those with different labels. Generally, the advantages of
metric learning are as follows:

• Avoidance of overfitting. The distance metric not only
measures the labeled botnet domains but also provides a
new data representation with interpretability and discrimi-
national capacity using the similarity between samples.

• Flexibility for dynamic threats. As reported, cybercriminals
have been proposing new botnets to resist Internet monitor-
ing. Hence, the number of botnet domain families is con-
stantly growing. The outputs of the metric learning frame-
work do not depend on the number of classes and only
need to reflect the similarity between the input data. This is
sharply different from pure classifier models, whose outputs
heavily rely on the total number of classes. In other words,
Domain2Vec can be easily expanded for unknown botnets
with simple tuning, while the classifier models need to be
retrained using entire known datasets whenever we detect
new botnet domain families.

More details of the metric learning framework are presented in
Section 4.3.

3.3. Domain fluxing technique
Domain fluxing is a cost-effective technique for botnet-related
cybercriminals. Early botnets use hardcoded domains or IP
addresses for the C&C channels. In this case, defenders can easily
block the malicious domains or IP addresses by blacklisting and
taking down the C&C servers. To avoid this problem, domain
fluxing can keep a malicious botnet in operation by constantly
changing the domain name of the botnet owner’s C&C server
[30]. Since the botnet domains constantly change, it is difficult
for defenders to blacklist botnet domains. We need an automatic
method to categorize botnet domains.

Domain fluxing uses Domain Generating Algorithms (DGA) to
generate domain names, e.g. simply drawing characters uniformly
at random or imitating character or word distributions of real
domains [12, 31]. The DGA can be generally classified in Table 2.

4. DESIGN OF Domain2Vec
We first present the system overview of Domain2Vec and then
describe its key technical components: sample selection, network
structure, and metric loss function. Finally, we discuss the appli-
cation scenarios of Domain2Vec.

4.1. System overview
Figure 2 illustrates the main workflow of Domain2Vec. In the
offline phase, it first selects a proper number of samples from
the labeled datasets of known botnet domains, to generate the
balanced data inputs. Domain2Vec will exploit those balanced
data to train a neural network model for learning appropriate
similarity metrics. Then, the well-trained model is utilized as a
feature encoder for efficient representation of botnet domains
and those numerical vectors (embeddings) could be used for
classification, retrieval, or clustering tasks, depending on specific
online use scenarios.

4.2. Sample selection
Direct utilization of all data from label datasets would result in
the challenge of unbalanced prediction. Because it is not rare
that there are only a few domain names in some botnet families
(classes) of public data, learning on the data inputs derived from
those entire imbalanced domain datasets may result in weak
performance, i.e. the classes with sufficient data may have higher
accuracy, but classes with fewer data may have lower accuracy. To
avoid the problems, we oversample the domains based on botnet
families (classes) to generate balanced data inputs.

4.3. Network structure
In this section, we focus on learning the appropriate representa-
tions of botnet domain inputs using a multi-head attention-based
neural network in Domain2Vec. To be brief, the employment of
attention mechanisms is to uncover which positions and alpha-
bets in the domain names have conclusive contributions to their
attributions.

The complete architecture of Domain2Vec’s network structure
can be found in Fig. 3. Next, we describe the implementation
details of its feature encoder G.

• Input layer. This layer receives the byte streams of entire
domains with a maximum length constraint s (s = 256 is
the max number of tokens in this work according to the
maximum length of domains [32]). Thus, zero padding is
added to those vector tails of short domains.

• Character embedding layer. Each character represented with
the integers by the Input layer would be compressed as the
m-dimensional (32 in Domain2Vec) numerical vectors. Thus,
those character embeddings are concatenated to produce a
s × m matrix for a given domain name.

• Positional encoding. Considering the position-insensitive
multi-head attention architecture, we introduce the absolute
positional encoding for the employment of positional
information in domain names according to the following
formulation:

ppos,2i = sin(pos/100002i/m) (1)

ppos,2i+1 = cos(pos/100002i/m), (2)

where pos denotes the encoded position and i is the embed-
ding dimension index in the positional encoding tensor.
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Figure 2. The workflow of Domain2Vec.

• Attention mechanism. Direct utilization of domain embed-
dings above might suffer low performance of categoriza-
tion because some specific positions and alphabets in the
data inputs (e.g. xx in two beginning positions of domains
xx4b836033.ru for botnet xxhex) should be focused on due to
their most pertinent information to accomplishing the task,
while others should be given less attention to avoid additional
noise. To this end, the multi-head attention architecture is
leveraged for realizing the automatic weighting of the charac-
ter embeddings via simple multiply operations. In this study,
8-head attention mechanisms are utilized to improve the
metric learning of botnet domain empirically.

• Normalization. For better generalization accuracy, layer-
wise normalization is utilized in the feature encoder of
Domain2Vec. Intuitively, normalization provides an appro-
priate opportunity for character embeddings even if they
are lightly weighted by attention scores. In this way, we can
prevent the possible overfitting caused by biased attention
and make the training faster.

Some deep metric learning frameworks explicitly employ the
shared-weight mechanisms of siamese networks [33] to make
sure the generalizability and consistency of representation out-
puts. In Domain2Vec, we implement it because the data will
be embedded by the same weights in a batch until the gradi-
ent updates. This design decision is due to the following con-
siderations: (1) low complexity: compared with multiple back-
bones in siamese networks, a single backbone network can sig-
nificantly reduce the size of the entire model; (2) flexibility: for
the training of siamese networks, the complex selection of data
inputs is necessary, i.e. apart from the balanced datasets, the fine-
crafted data inputs of all the backbones are additionally required.
In other words, Domain2Vec is adaptive to the various domain
datasets.

4.4. Loss function
Domain2Vec aims to learn a metric for appropriate representa-
tions of irregular botnet domains, as introduced in Section 4.2. In
this case, the traditional loss function frequently used in existing
supervised methods, e.g. categorical cross entropy [19, 22], is
infeasible. Hence, we need to define a new loss function.

Figure 3. The neural network model in Domain2Vec; note that K denotes
the number of input domains in a batch.

Our loss function considers the straightforward similarity/dis-
tance constraint, i.e. the similarity between samples from the
same domain family should be bigger than the similarity between
samples from different domain families. Specifically, given a data
batch x and corresponding labels y, the outputs of one data input
xi could be presented as Gθ (xi), where xi ∈ x, yi ∈ y, and θ is the
parameters of feature encoder G.

For one data x and its label y in the batch x, its similarity
from any data representation xδ could be roughly estimated by
Gθ (x)ᵀGθ (xδ), ∀xδ ∈ x. However, merely the inner product on repre-
sentation outputs could not reflect the real similarity due to the
following consideration: the embeddings of two domains A, B from
the same class usually have a smaller inner product (less similar)
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than the embeddings of two domain C, D from different classes
i.e. Gθ (xA)ᵀGθ (xB) < Gθ (xC)ᵀGθ (xD), yA = yB, yC �= yD, if the former
class is complex and hard. In other words, the domains from
one irregular botnet family would be always far away from each
other in the metric space. To address this, a smooth normalization
method is necessary and we thus adopt the softmax function for
illustration of (x, xδ) similarity:

sx(xδ) = exp(Gθ (x)ᵀGθ (xδ))∑
xi∈x exp(Gθ (x)ᵀGθ (xi))

, sx(xδ) ∈ (0, 1)′ (3)

Intuitively, sx(xδ) represents the confidence that xδ belongs to
a similar domain (the positive in the same class) as x in the
data batch x. The above similarity constraint could thereby be
presented as

sx(x+) > sx(x−) > 0 ∀x+, x− ∈ x, y = y+ �= y− (4)

Nevertheless, the above hard constraint may be too restrictive
since it requires the inequality holds for ∀x+, x− ∈ x. We thus relax
it into a soft one and rewrite the objective as

arg max
θ

∑
y+=y

∑
y− �=y

sx(x+)

sx(x−)
(5)

Assuming that there are K+ positives (including x itself) of the
anchor x in the batch x consisting of K domain names, the soft
constraint could be

arg max
θ

∑
y+=y

1
K+

sx(x+) −
∑
x′ ∈x

1
K

sx(x′ ) (6)

Note that
∑

x′ ∈x
1
K sx(x′ ) = 1

K because
∑

x′ ∈x sx(x′ ) = 1, and we
thus rewrite the objective as unified format of loss:

arg min
θ

−
∑
xδ∈x

px(xδ)sx(xδ), px(xδ) =
⎧⎨
⎩

1
K+

, yδ = y

0, yδ �= y
(7)

However, the loss is always a negative value that cannot be
directly utilized for training the backbone network. To this end,
we replace sx(xδ) with log sx(xδ) and the loss function on the entire
batch could be presented as

L(x, y) = − 1
K

∑
x∈x

∑
xδ∈x

px(xδ) log sx(xδ) (8)

Improvement for hard samples. In the categorization of diversified
botnet domains, some are easily embedded into a metric space
(e.g. domains from hash-based and permutation-based botnets),
while the others from those irregular botnets, a.k.a. hard samples,
are difficult to correctly predict the labels (botnet families) even
with the balanced data inputs. The underlying reason is that the
model considers the contribution of all samples equally, which
means that the vast number of easy samples would overwhelm
it and thus make it perform weakly on those irregular botnet
domains (hard samples). To this end, the dynamical scaling factor
(1 − sx(xδ))

γ is adopted to automatically down-weight the loss
assigned to well-categorized samples, and rapidly focus the model

on the hard samples as shown in the following:

L(x, y) = − 1
K

∑
x∈x

∑
xδ∈x

px(xδ)(1 − sx(xδ))
γ log sx(xδ)

where γ > 0 is a hyperparameter. Intuitively, for those positives
(domains in the same class) px(xδ) > 0, if the confidence sx(xδ) ≈ 1,
which indicates that the samples with same classes are similar in
the representations (easy samples), the scaling factor will reduce
their contributions to the loss with (1 − sx(xδ))

γ ≈ 0. In contrast,
those hard samples sx(xδ) << 1 with the low-confidence similari-
ties would be given more weights for efficient metric learning.

4.5. Use scenarios
After training, Domain2Vec works online and requires no
additional information but the individual domain names. Thus,
Domain2Vec is a versatile and flexible system applicable in
various scenarios. Below, we briefly introduce the deployment
of Domain2Vec (i.e. the online phase in Fig. 2) on real-world
networks.

For privacy concerns, most ISPs strictly restrict the access of
DNS-related traffic, e.g. source IPs, time stamps, DNS response
codes, because otherwise the ulterior can easily infer the sensitive
information of the customers, e.g. browsing history. In this case,
bare domain names are the only available information. Never-
theless, this information is enough for Domain2Vec to work well.
Domain2Vec embeds the bare domain names into appropriate
numerical vectors with the powerful feature encoder shown in
the online phase of Fig. 2, and uses those embeddings as the
inputs of classification, retrieval or clustering tasks. Furthermore,
Domain2Vec’s embedding function can be used as a service, for
example, accessible via an API or a web service usable by security
software or tools.

5. EVALUATION
We compare the performance of Domain2Vec and other existing
methods, including FANCI [9], HAGDector [27], Endgame [19],
Invincea [17], CMU model [28], MIT model [18], and NYU model
[29], with well-known public datasets [31, 34]. Furthermore, we
field-test Domain2Vec on real-world DNS records to find new
botnets.

5.1. Experiment setup
The data sources used in the paper are collected from the 360 DGA
repository, DGArchive service, and Rapid7 Foward DNS data.

• 360 DGA repository. This is massive passive DNS data of
360 DNS services and malware samples in real-time [34],
containing about 1 million botnet domains across 64 families
until 31 December 2021.

• DGArchive service. DGArchive service [31] is a public service
providing the malicious domains generated based on reverse-
engineered and known seeds. At the time of our experiment,
DGArchive contains about 120 million botnet domains and
106 families.

• Rapid7 Foward DNS dataset. The Rapid7 Foward DNS dataset
[35] contains the response results to DNS requests from
Rapid7’s DNS infrastructure, which will be used for the real-
world field test of Domain2Vec.

To conduct a comprehensive evaluation of benchmarks, we
divide the categorization of botnet domains into three tasks:
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Table 3. Characteristics of botnet domain datasets.

Name Botnet Number

Classification ξu
1 , ζu

1 10 10K
ξu

2 , ζu
2 30 30K

ξu
3 , ζu

3 50 50K

Retrieval ξu
4 , ζu

4 10 10K
ξu

5 , ζu
5 50 50K

Clustering ξu
6 , ζu

6 10 10K
ξu

7 , ζu
7 30 30K

ξu
8 , ζu

8 50 50K

Support Data ξ l
1 − ξ l

8, ζ l
1 − ζ l

8 50 500K

classification, retrieval, and clustering. For all the tests, the entire
datasets are divided into two parts, i.e. support sets ξ l

1 − ξ l
8, ζ l

1 − ζ l
8

of class sets μl
1 − μl

8, ν l
1 − ν l

8 and query sets ξu
1 − ξu

8 , ζ u
1 − ζ u

8 of
class sets μu

1 − μu
8, νu

1 − νu
8 . Note that the class sets of support

sets and query sets should be disjoint, i.e. μl
i ∩ μu

i = ∅, ν l
i ∩ νu

i =
∅, i ∈ [1, 8]. And, the support sets are extracted from the mixture
of DGArchive and 360 DGA repository to ensure that there are
sufficient categories (classes > 50), while the query sets are
derived from two data sources (ξu

1 − ξu
8 for DGArchive and ζ u

1 − ζ u
8

for the 360 DGA repository) for the generality of experiments.
Those support sets are only employed for offline training the
Domain2Vec’s feature encoders after the sample selection in
Section 4.2, and then the trained models are utilized to convert the
domains of corresponding query sets into vector representations
for the online categorization scenarios. More details of datasets
are presented in Table 3.

We highlight that Domain2Vec in real-world deployment can
work without labeled data, i.e. retrieval and clustering on unla-
beled query sets ξu

4 − ξu
8 , ζ u

4 − ζ u
8 . We test its performance on the

classification task on labeled query sets ξu
i , ζ u

i , i ∈ {1, 2, 3} purely
for the comparison purpose with several supervised baselines that
only work with labeled data, e.g. Invincea [17], CMU model [28],
and MIT model [18].

5.2. Performance of classification
To investigate the categorization capability of our framework with
labeled data, we conduct the classification tests on the supervised
baselines. To avoid sampling biases from the class sets’ difficulty,
we repeat the classification experiments 50 times and take the
average of the results for evaluation.

We implement the RF algorithm in Domain2Vec for this task.
As shown in Table 4, most methods, e.g. the NYU model and
Invincea model, achieve high performance on the classification
task of label datasets. Meanwhile, the classification performance
degrades generally for all the methods when the number of cat-
egories increases. Nevertheless, Domain2Vec outperforms all the
baselines and still achieves 0.94–0.99 accuracy results even on the
classification task of 50 classes. This demonstrates Domain2Vec’s
capacity and robustness in supervised categorization of domain
names.

5.3. Performance of retrieval
The domain retrieval is to fulfill this scenarios, i.e. researchers and
security teams could usually acquire a few new botnet domains
using the injected hosts or honeypots. However, such few samples
fail to be used for training a supervised classifier, where the
domain retrieval is a practical choice. In retrieval tests, the query

Table 4. Classification accuracy on labeled datasets.

Approach ξu
1 ξu

2 ξu
3 ζu

1 ζu
2 ζu

3

Helix(KNN) 0.898 0.787 0.754 0.926 0.833 0.789
FANCI(SVM) 0.725 0.523 0.434 0.657 0.455 0.364
FANCI(RF) 0.913 0.801 0.765 0.924 0.818 0.771
Endgame 0.871 0.826 0.815 0.846 0.799 0.785
CMU 0.859 0.789 0.776 0.825 0.767 0.746
NYU 0.961 0.913 0.897 0.952 0.916 0.897
Invincea 0.949 0.901 0.879 0.927 0.896 0.867
MIT 0.936 0.869 0.849 0.908 0.843 0.816
Embedding 0.948 0.893 0.874 0.927 0.885 0.859
Domain2Vec	 0.974 0.932 0.909 0.986 0.945 0.929
Domain2Vec	 0.980 0.946 0.929 0.988 0.960 0.946
Domain2Vec 0.987 0.956 0.941 0.990 0.964 0.951

	: attention layer removal 	: scaling factor removal

sets are embedded into representation vectors using Domain2Vec
encoder and other baselines. Then, the retrieval scores could be
calculated as x

k , i.e. precision@k (P@k), while the top-k nearest
neighbors in query sets have x relevant items (domains in same
classes) for a given embedding. As mentioned above, supervised
classifier-based methods cannot learn on only few samples of the
query class sets. Therefore, we exclude these approaches that only
work with sufficient labeled domain classes from the baselines
in the retrieval, except for FANCI and Helix. We also repeat the
experiments for avoiding sampling biases and present the results
in Table 5.

Almost all the methods achieve high performance on the bot-
net domain retrieval tasks. Nevertheless, domain can still take a
leading position over the baselines and realize 89.0–98.2% of P@k
which is a 13% improvement on average over the state of the art.

5.4. Performance of clustering
Domain clustering can address the botnet domain categorization
without any labeled data, where most existing methods fail to
classify the unlabeled domains due to their supervised classifier
architectures. Therefore, we exclude these approaches that only
work with labeled domain classes from the baselines in the
clustering experiments, except for FANCI and Helix.

For fair comparison, we also repeat the experiments to avoid
sampling biases and adopt the K-Means algorithm in Domain2Vec
and other baselines for clustering tasks. As shown in Table 6, the
categorization results of existing methods on unlabeled domain
datasets are unsatisfying, where the baselines usually achieve
0.30–0.52 adjusted rand index (ARI) scores and suffer weak per-
formance commonly on all the query sets, because FANCI and
Helix do not have a mechanism to leverage prior knowledge from
the support set. In contrast, Domain2Vec, benefitting from the
prior knowledge from the support set, can realize the effective
categorization of botnet domains and fulfill 0.64–0.94 ARI scores
on all the unlabeled datasets, which is a 100% improvement on
average over the existing works.

5.5. Ablation analysis
As stated in Section 4.3, the key components of Domain2Vec
consist of the attention mechanism in feature encoder and the
scaling factor (1 − sx(Xδ))

γ in the loss function. To validate the
architectures of Domain2Vec and learn the contribution of each
component, we performed the ablation study: we evaluate two
versions of Domain2Vec with the removal of the multi-head atten-
tion layer and the scaling factor, respectively. Then, those versions
will be utilized as the additional baselines in the classification,
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Table 5. Retrivel results (Precision@k %) on unlabeled datasets.

Approach ξu
4 ξu

5 ζu
4 ζu

5

P@1 P@2 P@4 P@8 P@1 P@2 P@4 P@8 P@1 P@2 P@4 P@8 P@1 P@2 P@4 P@8

Helix 90.9 89.3 87.0 84.3 78.5 76.4 73.6 70.2 94.7 93.2 91.1 88.5 88.3 85.1 81.0 76.4
FANCI 88.3 87.8 87.0 85.8 72.5 71.9 70.8 69.4 89.4 88.6 87.2 85.2 75.7 74.3 72.5 70.1
Domain2Vec	 96.3 95.7 95.1 94.4 89.1 88.3 87.3 86.2 97.5 96.6 95.4 93.9 93.3 91.3 88.6 85.4
Domain2Vec	 97.0 96.9 96.7 96.4 90.8 90.4 90.0 89.7 97.9 97.4 96.5 95.4 94.4 92.9 90.8 88.2
Domain2Vec 97.8 97.7 97.6 97.4 92.0 91.8 91.6 91.4 98.2 97.6 96.8 95.8 94.8 93.4 91.4 89.0

	: attention layer removal 	: scaling factor removal

Figure 4. Scatter plots (t-distributed stochastic neighbor embedding reduced) of the baselines’ and Domain2Vec’s embeddings on the common data inputs
(	 for attention layer removal and 	 for scaling factor removal).

Table 6. Clustering results (ARI) on unlabeled datasets.

Approach ξu
6 ξu

7 ξu
8 ζu

6 ζu
7 ζu

8

Helix 0.518 0.365 0.299 0.491 0.418 0.381
FANCI 0.481 0.328 0.266 0.420 0.316 0.280
Domain2Vec	 0.821 0.743 0.646 0.617 0.532 0.504
Domain2Vec	 0.874 0.825 0.760 0.696 0.632 0.597
Domain2Vec 0.940 0.909 0.861 0.747 0.676 0.642

	: attention layer removal 	: scaling factor removal

retrieval, and clustering experiments as shown in Tables 4, 5,
and 6.

The results illustrate that combination of multi-head atten-
tion and scaling factor used in Domain2Vec provides the best
performance on all the tasks because the attention mechanism

can focus on the critical positions and alphabets rather than
equally view all the characters in a botnet domain and the scaling
factor can effectively improve the resistance to those hard botnet
domain families. In other words, removing some Domain2Vec
components may leave out the useful (latent) features, resulting
in weaker performance.

To trace Domain2Vec’s high performance, we utilize the
embeddings using different methods on the same data inputs
of 10 typical botnets (e.g. makloader and rovnix) as shown in
Fig. 4. Intuitively, the embeddings of Domain2Vec are naturally
distinguishable where there are clear boundaries between classes.
Nevertheless, the embeddings with FANCI and Helix are relatively
irregular and weak in representation, where the data from
different classes may overlap. In this case, the categorization
algorithms could hardly perform on the embeddings. The
phenomenon shown in Fig. 4 could also be observed with all
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Figure 5. Illustration of (partly) malware domains on unknown and
known botnets discovered in the real-world DNS records; note that
bolzie.com and tradestrike.net (�) have been reported in the
DGArchive service.

botnets in DGArchive and 360 repository. We omit these figures
to save space.

5.6. Real-world test
To demonstrate that Domain2Vec can address botnet threats in
real-world deployment, we apply Domain2Vec on domains from
Rapid7’s real network DNS traffic to mine the botnet domains and
track the botnet actions.

We collected 1-month records from 1 February 2022 to 28
February 2022, from the Rapid7 Foward DNS dataset, which con-
tains ∼7.7 billion DNS records, where we filtered out about 21
million non-existing domains (NXDomains). Then, we utilize a
Domain2Vec encoder, which has learned on all known botnet
domains, for representations of those NXDomains as feature vec-
tors. And those vectors could be used for domain retrieval based
on the known botnet domains to find the unrecorded malicious
domain from known botnet families, and the others would be
clustered for the discovery of never-before-seen botnet domain
families. As the final result, we detected a number of suspicious
new botnet families in the real-world data, and Fig. 5 illustrates
several representative examples of discovered botnet domains.
Meanwhile, we also found that there are still 30 000 botnet
domains (18 botnet families), e.g. tradestrike.net in suppobox,
that have been reported in the DGArchive service [31] and 360 DGA
repository for a long time but still occurred in Rapid7’s real-world

DNS records for 2022. This finding confirmed that fighting botnets
is still a long way to go.

Additionally, different from the direct combination of algorithm-
generated subdomains and top-level domains, there are emerging
botnet domains that take the private domains of some domain
name registrars as their suffixes to further escape from monitor-
ing (e.g. New Botnet 3 in Fig. 5), and we have obscured the suffixes
with the wildcard (∗) to avoid conflict of interest. Therefore,
it is suggested that the private domain registrars might block
out those botnet domains timely and all the findings have been
reported to the security vendors, related ISPs, and the DGArchive
service.

6. CONCLUSION
In this work, we tackled the challenge of categorizing previously
unobserved botnet domains, a critical task for monitoring botnet
activities and mitigating associated threats. Botnets currently
employ DGA to swiftly generate fast-flux domains, thereby evad-
ing detection. Precise categorization of these botnet domains is
essential for the development of effective cybersecurity solutions
aimed at mitigating botnet threats. However, existing methods,
which rely on labeled data, fall short in effectively addressing
newly emerging botnets. We introduced “Domain2Vec,” a metric
learning-based methodology tailored for the fine-grained cat-
egorization of malicious domains. By employing a multi-head
attention-based encoder, Domain2Vec efficiently extracts fea-
tures and transforms botnet domains into appropriate numeri-
cal vectors. Comprehensive evaluations on public datasets and
real-world deployments demonstrate that Domain2Vec signifi-
cantly outperforms existing state-of-the-art solutions, achieving
improvements of 13% and 100% in the tasks of new domain
retrieval and clustering, respectively. Furthermore, Domain2Vec
has successfully detected previously unreported botnet domains,
affirming its efficacy and applicability in real-world scenarios.

Domain2Vec demonstrates extensive applications, notably
assisting cybersecurity firms in the early detection and prevention
of potential attacks targeting government networks. This
methodology supports organizations by meticulously monitoring
the generation and transformation patterns of domain names,
which facilitates the timely identification of emergent network
threats. Furthermore, Domain2Vec capitalizes on its sophisticated
feature extraction capabilities to offer Internet Service Providers
(ISPs) enhanced traffic analysis and management. By scrutinizing
anomalous domain access activities, the tool aids in fortifying
the network security architectures of businesses. Additionally,
it empowers legal authorities to augment law enforcement
measures by tracking domains linked to illicit activities, ulti-
mately aiding governments and organizations worldwide in
their endeavors to monitor and counteract burgeoning botnet
threats and other cybersecurity challenges. Future research will
be directed toward enhancing the computational efficiency of the
model to accommodate larger datasets and facilitate real-time
analysis across diverse network environments. In response to the
continuous evolution of botnet tactics, we intend to consistently
refine and augment Domain2Vec to address new threats and
challenges, thereby extending its capabilities to detect various
types of cybersecurity threats.
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